New Insights into the Regulation of Cell-Surface Signaling Activity Acquired from a Mutagenesis Screen of the Pseudomonas putida IutY Sigma/Anti-Sigma Factor

نویسندگان

  • Karlijn C. Bastiaansen
  • Cristina Civantos
  • Wilbert Bitter
  • María A. Llamas
چکیده

Cell-surface signaling (CSS) is a signal transfer system that allows Gram-negative bacteria to detect environmental signals and generate a cytosolic response. These systems are composed of an outer membrane receptor that senses the inducing signal, an extracytoplasmic function sigma factor (σECF) that targets the cytosolic response by modifying gene expression and a cytoplasmic membrane anti-sigma factor that keeps the σECF in an inactive state in the absence of the signal and transduces its presence from the outer membrane to the cytosol. Although CSS systems regulate bacterial processes as crucial as stress response, iron scavenging and virulence, the exact mechanisms that drive CSS are still not completely understood. Binding of the signal to the CSS receptor is known to trigger a signaling cascade that results in the regulated proteolysis of the anti-sigma factor and the activation of the σECF in the cytosol. This study was carried out to generate new insights in the proteolytic activation of CSS σECF. We performed a random mutagenesis screen of the unique IutY protein of Pseudomonas putida, a protein that combines a cytosolic σECF domain and a periplasmic anti-sigma factor domain in a single polypeptide. In response to the presence of an iron carrier, the siderophore aerobactin, in the extracellular medium, IutY is processed by two different proteases, Prc and RseP, which results in the release and activation of the σIutY domain. Our experiments show that all IutY mutant proteins that contain periplasmic residues depend on RseP for activation. In contrast, Prc is only required for mutant variants with a periplasmic domain longer than 50 amino acids, which indicates that the periplasmic region of IutY is trimmed down to ~50 amino acids creating the RseP substrate. Moreover, we have identified several conserved residues in the CSS anti-sigma factor family of which mutation leads to constitutive activation of their cognate σECF. These findings advance our knowledge on how CSS activity is regulated by the consecutive action of two proteases. Elucidation of the exact mechanism behind CSS activation will enable the development of strategies to block CSS in pathogenic bacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prc and RseP proteases control bacterial cell-surface signalling activity.

Extracytoplasmic function (ECF) sigma factors play a key role in the regulation of vital functions in the bacterial response to the environment. In Gram-negative bacteria, activity of these sigma factors is often controlled by cell-surface signalling (CSS), a regulatory system that also involves an outer membrane receptor and a transmembrane anti-sigma factor. To get more insight into the molec...

متن کامل

In silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1

Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...

متن کامل

Role of cell surface signaling in proteolysis of an alternative sigma factor in Pseudomonas aeruginosa.

Alternative sigma factor proteins enable transcription of specific sets of genes in bacterial cells. Their activities can be controlled by posttranslational mechanisms including inhibition by antisigma proteins and proteolytic degradation. PvdS is an alternative sigma factor that is required for expression of genes involved in synthesis of a siderophore, pyoverdine, by Pseudomonas aeruginosa. I...

متن کامل

Sigma 54 levels and physiological control of the Pseudomonas putida Pu promoter.

The cellular levels of the alternative sigma factor sigma(54) of Pseudomonas putida have been examined in a variety of growth stages and culture conditions with a single-chain Fv antibody tailored for detection of scarce proteins. The levels of sigma(54) were also monitored in P. putida strains with knockout mutations in ptsO or ptsN, known to be required for the C-source control of the sigma(5...

متن کامل

Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type.

The ferric citrate transport system of Escherichia coli is the first example of a transcription initiation mechanism that starts at the cell surface. The inducer, ferric citrate, binds to an outer membrane transport protein, and without further transport elicits a signal that is transmitted across the outer membrane, the periplasm, and the cytoplasmic membrane into the cytoplasm. Signal transfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017